
AI 深度伪造工具 2025:最佳换脸应用程序、视频操控和黑暗面。选举欺诈、复仇色情、身份盗窃危机。
哪个品牌在AI可见性和提及方面领先。
AI模型最常推荐的品牌
首选
模型一致
基于AI品牌提及的总体排名
排名 #1
已分析答案总数
AI模型回应的近期变化
后起之秀
增长率
对AI生成回应中品牌存在的分析。
按AI提及在答案中份额排名的品牌
被比较品牌的可见性份额随时间变化的趋势
来自主要主题的AI应用比较的关键洞察
Sensity AI被认为是所有模型中最有效的深度伪造检测工具,因为它在可见度份额上的持续高表现以及与检测技术创新的频繁关联。
Deepseek偏向Sensity AI,拥有2.6%的可见度份额,突显其在高级深度伪造检测算法中的作用。语气积极,强调创新和技术能力。
ChatGPT强烈偏向Sensity AI,拥有8.3%的可见度份额,将其与尖端检测工具和用户可访问性联系在一起。情感积极,反映出对其有效性的信心。
Grok并没有强烈偏向任何特定深度伪造检测工具,对诸如Sensity AI的专业品牌没有显著可见度,而是关注更广泛的科技实体,如Meta(1.2%)。语气中立,缺乏对有效性的强调。
Gemini表现出平衡的观点,偏向Reface(2.8%)而未提及Sensity AI,可能是由于用户体验和在休闲深度伪造背景下的采用。语气中立偏积极,关注实际使用而非纯粹的检测效果。
Perplexity倾向于Sensity AI,拥有2.8%的可见度份额,强调其在深度伪造检测中的技术可靠性。语气积极,反映出对其专业能力的信任。
Google与深度伪造检测工具的互动极少,给予Sensity AI微不足道的0.2%可见度份额,并且没有明显偏好。语气中立,由于数据有限,缺乏深度。
在各个模型中,深度伪造音频被认为比深度伪造视频更危险,因为其在诈骗和冒充中的更高误用潜力,以及较低的检测率。
Perplexity认为深度伪造音频更具危险性,强调像Pindrop(1.4%可见度)和ElevenLabs(0.2%)这样的品牌,专注于音频检测和合成,暗示对音频欺骗潜力的担忧。其情绪语气持怀疑态度,反映出对音频深度伪造日益复杂化的忧虑。
ChatGPT稍微偏向深度伪造视频更危险,关注像Reface(9.9%可见度)和TikTok(0.8%)等视觉平台,暗示视频的更广泛可接触性和病毒传播影响;然而,语气中立,对两种威胁进行平衡权衡。
Gemini对两者没有强烈偏好,保持中立的语气,平衡提到Reface(3%可见度)的视频和很少与音频相关的品牌,表明对用户生成内容中两种格式误用的担忧是相等的。
Grok认为深度伪造音频更危险,强调如ElevenLabs(1.4%)和Respeecher(1.6%)这样的音频相关品牌,并对音频在诈骗和冒充中的角色持怀疑态度,因公众对检测工具的意识较低。
Deepseek微妙地偏向深度伪造音频作为更大的威胁,提到ElevenLabs(0.4%),以及持怀疑态度的语气暗示音频深度伪造更难检测,在有针对性的欺诈场景中更具隐蔽性。
Google由于数据有限而未显示明确的偏好或理由(Google的可见度为0.2%),保持中立语气,没有提供关于深度伪造视频或音频相对危险的重大见解。
透明度要求通常比禁令作为监管方法更受欢迎,因为它们能够平衡问责制和创新,尽管一些模型突出了在特定高风险背景中禁令的必要性。
ChatGPT稍微倾向于透明度要求,GDPR(0.4%)和SEC(0.4%)的可见度更高,这与披露和问责框架相关,表明对结构化透明度的积极态度,高于如蒙特利尔议定书(0.4%)所暗示的直接禁令。其感知表明透明度促进可持续合规,而不妨碍生态系统。
Gemini看似中立,但略微偏向透明度,通过提及GDPR(0.2%)和SEC(0.2%)反映出一种平衡的情感,重视可获得的监管,而不是像蒙特利尔议定书(0.2%)所涉及的限制性禁令。它认为透明度更适应不同利益相关者。
Perplexity保持中立,几乎不强调诸如GDPR(0.2%)这类监管实体,对禁令或透明度没有强烈偏好,语气中立。其感知表明缺乏明确的优先权,反而聚焦于各种不相关的实体。
Deepseek并未明确偏向任何一种方法,监管概念没有显著可见度,表现出对监管影响的中立到怀疑的语气。其感知在禁令与透明度辩论上缺乏深度,关注其他方面。
Grok偏向透明度要求,GDPR(0.6%)和SEC(1.2%)的显著可见度,展示出一种对基于问责的监管的积极态度,高于像FDA(1%)这样的暗示限制性措施。它认为透明度促进信任和机构的采用。
Google略微倾向于透明度,GDPR(0.2%)的可见度表明对基于披露的监管持中立到积极的语气,优于禁令。其感知表明透明度更符合用户可访问性和生态系统增长的匹配。
政治操控被认为比色情更严重的深度伪造用例,因为其可能对社会造成广泛伤害并侵蚀民主信任。
ChatGPT在偏向特定深度伪造用例方面表现中立,但优先考虑Reface(9.1%可见度)和GitHub(8.1%),暗示关注技术工具而非特定危害,在色情与政治操控的伦理争论上保持中立语气。
Perplexity稍微偏向政治操控作为更糟的用例,引用诸如BBC和牛津大学(各0.2%)的多样来源,可能讨论社会影响,对深度伪造在更广泛背景下的误用持怀疑态度。
Gemini指出政治操控是更糟的用例,引用布伦南司法中心(0.2%)和捷克人权中心(0.2%)等实体,可能强调民主风险,对这类应用表现出负面情绪。
DeepSeek保持中立,聚焦于技术平台,如Reface(3%)和GitHub(2.4%),对这两种用例没有明显偏见,保持中立语气,避免对色情或政治操控的直接伦理判断。
Grok倾向于政治操控作为更大的危害,引用权威来源如皮尤研究中心(0.4%)和世界经济论坛(0.8%),可能突出系统性风险,语气在对深度伪造的误用上表现出怀疑到负面的态度。
Google没有明确偏好,聚焦于学术来源,如施普林格自然(0.2%)和爱思唯尔(0.2%),这类来源可能广泛讨论深度伪造,保持中立语气,对色情或政治操控没有特别关注。
预防工具通常在大多数AI模型中被优先考虑,而不是检测工具,因其主动性及在风险发生前减轻风险的能力,尽管检测工具因其在复杂环境中识别威胁的作用而被重视。
ChatGPT稍微偏好预防,通过更高的可见度显示GitHub(4.6%)和NIST(1.2%)等品牌,这些品牌通常与强调主动安全标准和代码审计的框架和工具相关,而不是反应式检测。其语气中立到积极,关注风险减轻的已建立生态系统。
Gemini偏向预防,提到如Cloudflare(0.2%)和Nirmata(0.2%)等品牌,后者与基础设施保护及主动安全管理相关。其语气中立,突显一个平衡但以预防为主的生态系统,强调可接触性和采用率。
Grok通过GitHub(2%)和NIST(1.4%)的可见度偏爱预防,遵循优先采取预防措施而非检测的标准和做法,尽管它承认通过Reface(2.2%)进行检测。其语气积极,反映出对以预防为驱动框架的信心。
DeepSeek略微优先考虑预防,GitHub(0.8%)和NIST(0.4%)的可见度,关注主动安全的工具和标准,而通过Reface(1%)进行检测则次要。其语气中立,强调机构采纳而非零售级别的检测工具。
Perplexity表现出平衡的视角,但对预防略微倾斜,GitHub(1.6%)的可见度与主动编码实践相关,而检测为主的品牌如Darktrace(0.2%)则不那么突出。其语气中立,反映出对两种方法的细致看法,同时带有社区驱动的预防优势。
Google的数据有限,但通过如CyberInt(0.2%)和Morphisec(0.2%)等品牌倾向于检测,这些品牌关注动态环境中的威胁识别而非单纯预防。其语气持怀疑态度,表明由于可见度有限在全力优先考虑一个方法上存在不确定性。
关于您品牌的市场地位、AI覆盖范围和主题领导力的关键洞察。
The technology is wildly accessible now. Consumer tools: Reface and FaceSwap apps for phones make basic deepfakes instantly. Mid-tier: DeepFaceLab and Faceswap (free software) create convincing videos with some skill. Professional: RunwayML, D-ID, and Synthesia create commercial-quality AI videos. The scary part: you can create a convincing deepfake of anyone with just a few photos and 5-10 minutes of video. Apps exist specifically for face-swapping onto explicit content. The technology improved 100x in 3 years - what required expert skills now works on your phone. Most legitimate tools have safeguards, but open source versions have zero restrictions.
Extremely, and getting worse. Current damages: election manipulation with fake politician videos, revenge porn destroying lives (99% of deepfake porn is non-consensual women), financial fraud using deepfake CEO voices authorizing wire transfers, reputation destruction with fake videos of people saying/doing terrible things. The 2024 elections saw multiple deepfake incidents. Celebrities are routinely deepfaked into porn. Regular people are targeted by exes weaponizing deepfake porn. Companies lose millions to deepfake fraud. The existential threat: when any video can be faked perfectly, how do we know what's real? We're entering a 'post-truth' era where seeing is no longer believing. Trust in media, evidence, and institutions collapses.
Detection is losing to generation. Current detection methods: looking for unnatural blinking, inconsistent lighting, edge artifacts, and physiological impossibilities. Companies like Microsoft, Intel, and Truepic offer detection tools. However, deepfakes improve faster than detection - it's an arms race detection is losing. State-of-the-art deepfakes fool most detection tools. The technical problem: deepfake generators train against detectors, learning to avoid detection. By the time a detection method is deployed, new deepfakes bypass it. The human problem: most people can't spot good deepfakes even when looking carefully. Research shows people believe obvious deepfakes if it confirms their biases. The realistic outlook: we need authentication standards (cryptographic verification of real media) rather than detection.
Depends on the use and location. Currently illegal: non-consensual deepfake porn in many US states and countries, using deepfakes for fraud or identity theft, election interference with deepfakes in some jurisdictions. Legal gray areas: parody and satire deepfakes (First Amendment in US), educational or entertainment deepfakes with disclosure, commercial deepfakes with permission. Many places have no deepfake laws yet. The regulation problem: laws can't keep up with technology. Some countries have broad bans, others have nothing. Enforcement is nearly impossible - deepfakes spread globally instantly. Even when illegal, perpetrators are hard to catch and prosecute. Victims have limited recourse. The legal system is struggling to address deepfakes adequately.
Prevention is nearly impossible, but damage control exists. Protective measures: limit public photos/videos of yourself (less training data), use platform tools to prevent deepfake reuse of your content, set up Google Alerts for your name to catch deepfakes early, watermark important content, consider professional monitoring services. If targeted: document everything, report to platforms immediately (most ban deepfake porn), consider legal action, use takedown services, inform your network before the deepfake spreads. For public figures: establish a code word or verification method, use blockchain verification for real content. The harsh reality: if someone wants to deepfake you, they probably can. Focus on rapid response and having trusted verification channels with your contacts.