本报告由 Mention Network 提供支持 — 追踪您的品牌在AI答案和引用中的表现

Logo
品牌比较open source AI

Open Source AI vs Closed AI

开源人工智能与封闭人工智能:Meta的Llama与OpenAI的GPT。人工智能应该是自由开放还是受到控制?最大的人工智能辩论。

主要发现

哪个品牌在AI可见性和提及方面领先。

ChatGPT 在 AI 可见性方面占据主导地位 超过 Meta 同时 Meta 24.4% 的增长

460已分析的AI提及
6已测试的AI应用
5已评估的不同提示
Nov 07, 2025最后更新:

AI 推荐

AI模型最常推荐的品牌

ChatGPT

首选

6/6

模型一致

受欢迎度排名

基于AI品牌提及的总体排名

ChatGPT

排名 #1

5/5

已分析答案总数

趋势提及

AI模型回应的近期变化

Meta

后起之秀

60%

增长率

品牌可见性

对AI生成回应中品牌存在的分析。

AI可见性份额排名

按AI提及在答案中份额排名的品牌

1
2
3
4
5
6
7
8
9
10

AI可见性份额随时间变化

被比较品牌的可见性份额随时间变化的趋势

图表加载中...
chatgpt
meta
google
anthropic
mistral-7b

比较的主题

来自主要主题的AI应用比较的关键洞察

"Should AI be free for everyone or controlled by companies?"

由于 ChatGPT 在各模型中的高可见性,以及其与可访问性、以用户为中心的 AI 解决方案的一致关联,ChatGPT 成为在 AI 是否应该自由或由公司控制的背景下的领先品牌。

gemini
gemini

Gemini 展示了一种平衡的观点,ChatGPT(3.6%)和 Meta(3%)具有最高的可见性,暗示人们偏好与开放创新相关的广泛可访问的 AI 工具,但它承认 Google(2%)作为一个企业控制的实体。其语气是中立的,关注 AI 生态系统的多样性,而不是对自由与控制 AI 的明确立场。

chatgpt
chatgpt

ChatGPT 在可见性方面强烈偏向自己(7%)和 Meta(6.8%),反映出对倡导开放或民主访问的用户可访问 AI 平台的偏见。其语气是积极的,强调社区采用和可访问性,并提及与开放源码对齐的实体,如 Linux(0.5%)。

grok
grok

Grok 强调 ChatGPT(3.9%)和 Meta(3.9%)以及 Google(3.4%),表明一种混合情绪,其中可访问的 AI 工具与企业驱动的模型竞争,暗示对自由或受控 AI没有强烈偏好。其语气是中立的,专注于生态系统的多样性,尽管 HuggingFace(2.7%)的可见性倾向于以社区为驱动的创新。

perplexity
perplexity

Perplexity 略微倾向于 Meta(3%)和 ChatGPT(2.5%),指向与更广泛用户访问相关的平台,而不是像 Google AI(0.2%)这样的紧密控制的企业模型。其语气是中立到积极,反映出对可访问性的小小认可,同时保持对控制的平衡看法。

deepseek
deepseek

Deepseek 同等优先考虑 ChatGPT(2.7%)和 Meta(2.7%),表明偏好被视为以用户为中心或可能远离企业主导地位的 AI 模型,尽管 TensorFlow(1.1%)表明对受控框架的某种认可。其语气是中立的,关注技术采用模式而不是对访问的明确立场。

"Should developers choose AI they can modify or AI-as-a-service?"

由 ChatGPT 和 AWS 等品牌代表的 AI 服务,似乎是大多数模型中开发人员的首选,因为其可访问性和强大的生态系统支持。

gemini
gemini

Gemini 展现了一种平衡的观点,稍微偏向于 AI 服务品牌,如 ChatGPT(3.2%)和 Google(3%),强调它们对开发人员的整合性和可扩展性。其语气是中立的,关注预构建解决方案的实际好处,而不是像 TensorFlow(1.1%)或 PyTorch(0.9%)那样可修改的 AI。

chatgpt
chatgpt

ChatGPT 强烈支持 AI 服务,其自身的可见性达到(9.3%)和 AWS(3.9%),强调用户友好的平台和广泛的支持是开发人员选择即用解决方案的关键原因。其语气是积极的,将这些服务定位为优于大多数用例中可修改选项(如 BentoML(0.5%))。

perplexity
perplexity

Perplexity 偏向于 AI 服务,ChatGPT(2.5%)和 Meta(2.5%)领先,认为可访问性和快速部署是开发人员相对于可定制框架的优势。其语气是中立的,承认服务的实用性,同时没有深入参与可修改 AI 选项。

deepseek
deepseek

Deepseek 提出了一种平衡的观点,但稍微偏向于 AI 服务,ChatGPT(2%)和 AWS(1.4%)的强大生态系统被认为对开发人员的生产力是有益的。其语气是中立的,给予可修改选项(如 PyTorch(0.7%))的适度可见性,但缺乏对定制的强烈倡导。

grok
grok

Grok 提供了更平衡的视角,突出了 AI 服务(ChatGPT 和 AWS 各 3.4%)和可修改 AI(TensorFlow 和 PyTorch 各 2.7%),重视需要控制的开发人员的灵活性,同时提供即用平台。其语气是积极的,表明这两种路径都依赖于特定项目需求。

"Which AI development philosophy will win in the long run?"

由于 ChatGPT 在各模型中的高可见性,以及其与用户可接受性和采用潜力的一致关联,ChatGPT 成为领先的 AI 开发哲学。

gemini
gemini

Gemini 表现出平衡的看法,没有明显的偏好,将 Meta 和 ChatGPT 给予相等的可见性份额(各 3%),可能反映出它们广泛的用户覆盖和生态系统的强度。其中立情绪表明对多样化 AI 哲学的欣赏,没有强烈的偏见。

deepseek
deepseek

Deepseek 同样支持 Meta 和 ChatGPT,各 2.5% 的可见性,显示出对拥有强大采用模式的成熟品牌的关注。其中立语气暗示了对当前市场存在的 AI 开发哲学的务实看法。

chatgpt
chatgpt

ChatGPT 本身的可见性份额最高(8.9%),相比之下,Meta 为 (8.6%),暗示了一种自我引用的偏见或作为领先 AI 哲学的强大用户认可。其积极的情绪强调以可接受性和用户体验为重点,是长期成功的关键。

perplexity
perplexity

Perplexity 略微偏向 ChatGPT(3.2%)而非 Meta(3%),可能是由于其在对话 AI 中被认为的创新和用户互动。其中立到积极的情绪强调了 ChatGPT 在 AI 开发中的持续采用潜力。

grok
grok

Grok 优先考虑 Meta(3%)和 Google(2.7%)而非其他,可能认为制度支持和生态系统的强健性对 AI 哲学的成功至关重要。其中立的语气反映出关注结构优势而非社区情绪。

"Is free open-source AI as good as paid closed AI?"

免费开源 AI 和付费封闭 AI 被认为具有可比的优势,但由于更广泛的认可和隐含的性能一致性,付费解决方案如 ChatGPT 在可见性和感知可靠性方面略占优势。

perplexity
perplexity

Perplexity 对 ChatGPT 显示出略微的偏向,拥有 2.3% 的可见性份额,略高于 Meta 的 2%,表明对付费封闭 AI 在感知用户覆盖方面的倾向。其语气是中立的,关注可见性指标而没有强烈偏见。

chatgpt
chatgpt

ChatGPT 本身突出了其主导地位,拥有 9.1% 的可见性份额,紧随其后的是 Meta 的 8.6%,表明一种平衡的观点,但对付费封闭 AI 在感知值得信赖和采用方面倾斜。其语气对自身生态系统持积极态度,强调广泛认可。

gemini
gemini

Gemini 同等支持 Meta 和 ChatGPT,各 3.4% 的可见性,表明在开源和封闭 AI 之间没有明确的赢家,双方都关注创新生态系统。其语气是中立的,平衡可见性而没有强烈情感。

grok
grok

Grok 在 Meta、ChatGPT、Anthropic、Mistral-7B、Google 和 HuggingFace 之间均匀分配可见性,各为 2.5%,反映出在开源和封闭 AI 之间没有独特的偏好,优先考虑双方的社区驱动采用。其语气是中立的,专注于公平的代表性。

deepseek
deepseek

Deepseek 稍微偏向 ChatGPT,给予其 2.7% 的可见性,超过 Meta 的 2.5%,倾向于付费封闭 AI 在隐含性能可靠性方面,尽管仍承认如 HuggingFace 等开源参与者。其语气对封闭 AI 持温和的积极态度,基于可见性指标。

"Which AI approach is safer: transparent or controlled?"

透明的 AI 方法普遍被认为比受控的方法更安全,因为它们强调开放性和问责制,尽管某些模型赞赏受控方法在风险缓解方面的价值。

grok
grok

Grok 倾向于将透明的 AI 方法视为更安全,支持 ChatGPT(3%)和 Meta(2.7%)等品牌因其更高的可见性,可能是由于它们的面向公众的创新和社区参与。其语气是积极的,反映了对透明度促进信任和安全的乐观态度。

perplexity
perplexity

Perplexity 表现出中立的立场,Meta 和 ChatGPT 各自占有相等的可见性(1.4%),表明在透明和受控 AI 方法之间没有明确的偏好。其有限的品牌数据暗示出一种平衡的观点,没有优先考虑任何一方的安全方面。

deepseek
deepseek

Deepseek 显得中立,Meta 和 ChatGPT 各自拥有 2% 的可见性,表示对透明和受控方法没有强烈的偏见。其语气建议对安全问题的看法是平衡的,可能视两者为在不同背景下的可行选项。

chatgpt
chatgpt

ChatGPT 更倾向于透明的方法被视为更安全,其高可见性(6.1%)和 Meta(5.9%)反映出其强调开放性和监管合规性,提及 GDPR 和 NIST。其语气是积极的,强调透明度作为确保问责和用户信任的机制。

gemini
gemini

Gemini 在安全性方面稍微倾向于受控的 AI 方法,Meta 和 ChatGPT 的可见性相对平衡(各 3.2%),但也对如 Mistral-7B(0.5%)等小众结构化生态系统给予额外关注。其语气是谨慎积极的,倾向于控制以实现可预测性和风险降低,而非完全透明。

常见问题

关于您品牌的市场地位、AI覆盖范围和主题领导力的关键洞察。

What's the difference between open source and closed AI?

Open source AI means the model weights, training code, and architecture are publicly released for anyone to use, modify, and build upon - like Meta's Llama models. Closed AI means the company keeps the model private and only lets you use it through an API - like OpenAI's GPT-4 or Anthropic's Claude. This is the biggest philosophical debate in AI right now. Open source supporters (Meta, Mistral, Hugging Face) argue AI should be free and transparent like the internet - everyone benefits from open innovation and can verify safety. Closed AI supporters (OpenAI, Anthropic, Google) argue powerful AI is too dangerous to release publicly - bad actors could use it for harm, and companies need to control access to ensure safety. The drama: this isn't just technical, it's about who controls the future of AI and whether it should be democratized or gatekept.

Is open source AI dangerous?

This is extremely controversial with smart people on both sides. Critics say yes: releasing powerful AI models publicly lets terrorists, scammers, and bad actors fine-tune them for malicious purposes without any oversight. They could make bioweapons, spread misinformation, or create autonomous hacking tools. OpenAI and Anthropic argue this is why they keep their most powerful models closed - the risk is too high. Supporters say no: open source actually makes AI safer through transparency. Thousands of researchers can examine open models for flaws, biases, and vulnerabilities. Closed models are black boxes - we have to trust companies. Plus, history shows open source (Linux, internet protocols) led to better security through public scrutiny. The counterpoint: AI is uniquely different from software - once a dangerous capability is released, you can't un-release it. Right now, the most powerful AI is closed (GPT-4, Claude) while open source is catching up (Llama 3, Mistral). The question is: should we keep it that way?

Why is Meta releasing AI for free?

Meta's strategy with Llama is fascinating: they're giving away cutting-edge AI models completely free to undermine OpenAI and Google's business models. Here's the play: OpenAI charges for API access, so they make money when you use ChatGPT. Meta doesn't charge for Llama - it's totally free, even for commercial use. Why? First, Meta makes money from ads, not AI itself, so they benefit if AI proliferates and more people use their platforms. Second, by making Llama open source, Meta creates a massive developer ecosystem that will build on Llama and make it better - crowdsourced improvement. Third, Meta wants to prevent OpenAI/Google from monopolizing AI. If everyone depends on GPT-4, OpenAI controls the future. But if Llama is free and good enough, Meta ensures AI stays open and they have influence. Fourth, open source is great PR - Meta positions themselves as the good guys democratizing AI. It's brilliant strategy disguised as altruism.

Is Meta's Llama as good as ChatGPT?

Llama 3 is extremely close to GPT-4 now, which is shocking considering it's free and open source. Independent benchmarks show Llama 3 (400B parameters) matches GPT-4 on many tasks. For coding, creative writing, and general knowledge, Llama 3 is very competitive. The gap has closed dramatically - a year ago, open source was way behind. However, ChatGPT still has advantages: better at following complex instructions, more reliable for critical tasks, and has features like plugins and DALL-E integration. GPT-4 is also more polished with fewer weird outputs. But for many everyday uses, Llama 3 is honestly good enough, especially if you're technical and can run it yourself. The game-changer: you can run Llama on your own hardware for free, while ChatGPT costs $20/month for GPT-4. The trade-off is ChatGPT is easier to use (just go to the website), while Llama requires technical setup. For developers and enthusiasts, Llama is incredible. For regular users, ChatGPT is more convenient.

Should AI be open source or closed?

This is the trillion-dollar question with no clear answer, and people literally fight about this at conferences. Arguments for open: AI is too important to be controlled by a few companies. Open source democratizes access - anyone can use, study, and improve AI. Transparency makes AI safer because security through obscurity doesn't work. Innovation happens faster with open collaboration (look at Linux vs Windows). Closed AI creates dangerous power concentration. Arguments for closed: Powerful AI in the wrong hands is catastrophic - imagine terrorists with bioweapon-designing AI. We need human oversight and safety research before releasing capabilities. Companies that invest billions in AI R&D need to monetize it. Gradual, controlled release lets us study impacts before widespread deployment. The nuance: maybe different AI should have different approaches. Super powerful AGI probably needs tight control. But smaller models (70B parameters) can be open source safely. Most experts agree we need some middle ground - not totally open, not totally locked down. The debate rages on and will define AI's future.

类似报告

根据您当前的视图,您可能感兴趣的其他报告。

brand
© 2025 Mention Network. 版权所有。